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Conservation laws in electrically polarizable spatially 
dispersive media: I. Dynamic equations 

V G Bar’yakhtar, B I Khudik and I I Obozhin 
Institute of Metal Physics, Ukrainian Academy of Sciences, 252680, Kiev-142, USSR 
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Abstract. The problem of the additional boundary condition in macroscopic crystal optics is 
considered from the standpoint of conservation laws. The possibility of obtaining this 
condition in the form of a continuity condition at the interface between WO media for 
macroscopic flux density of the internal angular momentum is substantiated. As is shown, 
to solve this problem one must describe a medium with excitonic polarization within the 
framework of a general approach, where mechanical vibrational, polarization and electro- 
magnetic degrees of crystal freedom are considered together. It is shown that, to take the 
spatial dispersion into m u n t  correctly, one must consider the dependence of the crystal 
energynot onlyonthefirst-orderspacederivativesofpc.lari~ationbut alsoonthoseofsmnd 
order. The consideration of conservation laws and the derivationofthe additional boundary 
condition will be given in part II of this work. 

1. Introduction 

I .I. Preliminaries 

Since the time when Pekar (1957) pointed out the necessity for specifying the additional 
boundary condition (ABC) in the electrodynamics of spatially dispersive (SD) media, 
this ABC has been the subject of numerous investigations (see the bibliography in 
the collective monograph edited by Rashba and Sturge (1982)). Nevertheless, the 
understanding of the problem seems to be far from perfect. Unquestionable progress 
has been made in understanding what specific forms the ABC may take. Meanwhile, 
insight into the physical reasons why the ABC assumes just these forms is still largely 
illusory. 

As far as we can judge from available publications, the most recognized by inves- 
tigators is the microscopic approach to the ABC problem, where to obtain the ABC they 
attempt to find a self-consistent solution of Maxwell and Schrodinger equations. This 
approach is certainly the most precise one, but high accuracy, being an advantage of the 
microscopic approach, has nevertheless been achieved at the cost of, in ow opinion, 
unnecessary particularity of the ABC problem statement. This in turn has led to a 
considerable spread in results obtained by different authors but apparently has not 
revealed the physical idea that lies behind the ABC. 

In this sense the possibility of resolving the ABC problem within the framework of a 
macroscopic phenomenological approach, where the state of the medium is described 
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in terms of macroscopically continuous field variables, gains prime importance. As is 
known, on treating a problem in this way one makes the problem statement more fine; 
but in return one makes it more general and profits from the universality of the final 
results. Unfortunately the macroscopic treatment meets a difficulty that is insur- 
mountable from our point of view without going beyond the scopeof the traditional ABC 
problem formulation. 

V G Bar'yakhtar et a1 

1.2. Theessence of theproblem 
In standard interpretation the ABC problem is reduced to the question of how to join two 
macro-asymptotic solutions, polaritons and electromagnetic waves, at the interface of 
two media, vu .  an SD medium and one for which spatial dispersion effects are negligible. 
As the former, some crystal is considered, provided that the frequency of the waves is 
close to  an exciton resonance line for a given crystal. As the latter, either the vacuum or 
an exciton-free layer of the same crystal, where the wave frequency does not fall within 
the remnant region, is chosen. 

The main point of the difficulty is that at the interface some transition layer occurs 
within which polariton solutions go over to those in the form of electromagnetic waves. 
Since the exciton resonant region as a rule is extremely narrow (Acu/wo = the 
width of this transition layer may prove to be small enough to become of the same order 
of magnitude as the effective range parameter in the short-range interaction responsible 
for the spatial dispersion. If that is the case, the transition layer, unlike the rest of the 
crystal, may not be described in terms of macroscopic field variables only, so long as 
there are no grounds for regarding the exciton polarization pcx(x) to be a suficienfly 
smooth function of coordinates x as Agranovich and Ginzburg (1966) believed or for 
regarding the wavevector k to be small everywhere as assumed by Skettrup (1973). 

Thus, the fact that within the transition layer the functionpCX(x) may prove to be 
insufficiently smooth should be taken into account, thereby bringing into question the 
validity ofreducing thenon-local expression for stored energy within the transition layer 
to the local form by expanding this expression in a power series of weak polarization 
gradient; though a reduction like this is usual when one treats the AEC problem within 
the scope of a traditional macroscopic approach interpretation. 

If, all thesame,on describing the transition layer one employsfomally this reduction 
in the way Agranovich and Ginzburg (1966) did, the series coefficients will be inde- 
terminate quantities; and it is exclusively the ABC that, if it were at hand, could provide 
the required information on these coefficients. 

In order to avoid confusion, it is appropriate to note that our interpretation of the 
ABC problem is distinct from the one proposed by Birman and Sein (1972), Biman 
(1982) and Birman and Zeyher (1974) or, say, by Halevi and Fuchs (1984). In their 
works, to obtain the ABC they proceeded from the fact that the reflectivity for excitons 
is either assumed to be given as a result of a microscopic consideration or thought to 
be an arbitrary phenomenological parameter, which is equivalent to postulating the 
boundary condition forexcitons. An analogousapproach has been developedfor the case 
of conducting media in the works by Garcia-Moliner and Flores (1977), Mukhopadhyay 
(1978) and Forstmann eta1 (1978), where the reflectivity for plasmons was introduced 
through a parameter. Since according to Pekar (1983) and Zeyher et al(l972) the form 
of the ABC depends in a unique fashion on the reflectivity for excitons, to resolve the ABC 
problem within the framework of the macroscopic approach must imply, from our point 
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of view, finding this reflectivity from first principles by means of macroscopic methods 
only. 

1.3. Basicprinciples of our approach 

To overcome the difficulty mentioned above without resort to the help of microscopic 
considerations, we should combme the field variables into a quantity that is macro- 
scopically continuous at the interface. As is known, the flux density of every constant of 
motion is an example of such a continuous quantity. When the problem of boundary 
conditions (BC) is considered in mechanics and electrodynamics of continuous media, 
making use of the conservation laws of linear momentum and of energy is usual. As 
regards the ~ ~ c p r o b l e m ,  taking these laws into account is necessary too. Particularly, 
energy conservation, in accord with Bishop and Maradudin (1976) and Selkin (1977), 
imposeslimitationson the formofthe ABC. Unfortunately, makinguseofonlythese laws 
would not resolve the  problem for the case of SD media with excitonic polarization. 

To be fair we must note that Forstmann (1979) attempted to solve the ABC problem 
for the case of an excitonic dielectric by proceeding from energy conservation only. 
Particularly, Forstmann split up the condition of energy flux continuity at the surface 
into some separate conditions. This approach has already been criticized by Boardman 
(1982). In our opinion Forstmann’s method seems to add nothing new in comparison 
with the approach proposed by Halevi and Fuchs (1984) as long as exciton reflectivity 
remains an indeterminate parameter. As a matter of fact, Fortsmann removed this 
indeterminacy in his work by imposing restrictions on BC for the electromagnetic field, 
which is certainly equivalent to postulating the ABC. We shall return to this question in 
part I1 of this work with our ABC being at hand. 

Therefore we shall turn our attention to a study of the law of angular momentum 
(AM) conservation, which, as a rule, was assumed to be beyond the scope of the ABC 
problem. 

More than likely the latter circumstance may be attributed to the fact that, when 
they considered the ABC problem, the investigators used, consciously or otherwise, the 
notion originating from the mechanics of unpolarized media, where the AM, being 
generated by the motion of the centres of mass of the crystal unit cells only, contains 
exclusively an orbital component of the total AM. The point is that in such a case the 
condition of AM flux density continuity (AM mc) at the interface may readily be reduced 
to an analogous condition for linear momentum with the former bringing about no 
independent BC. 

According to de Groot and Suttorp (1972) and also Lax and Nelson (1976a, b), when 
electrical polarization is the case, an additional contribution to the total AM arises. This 
contribution is generated by the motions within the unit cells and is called internal 
angular momentum (IAM). 

The main point of the foregoing situation is that the condition of total AM FDC is 
reducible in the light of the above-stated reasoning to the condition of IAMFDC with the 
latter not being a simple identity if spatial dispersion occurs. 

The presence of spatial dispersion is of paramount importance for the IAM FDC 
condition to be an independent BC, because otherwise the IAM is constrained to move 
with the material, and IAM transfer across the transition layer is impossible. That is why, 
for example, being a corollary of the AM conservation law in the specific case of a non- 
dispersive medium, the BC (7.6) obtained in Lax and Nelson (1976b) does not contain 
any additional information in comparison with some other BC derived in the same work. 
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According to Lam (1977a. b) and Lam and Lax (1978), in the case of an SD medium 
the IAM may be transferred through the crystal, and consequently we may infer that the 
condition of the IAM FDC across the transition layer becomes an independent BC, which, 
being expressed in terms of p'", may be used as the ABC. 

The foregoing reasoning is the basis for the novel approach to the ABC problem, and 
the aim of our work is to obtain the ABC in this way. 

1.4. Choosing a formalism 

In spite of the fact that the conservation laws of linear momentum and of energy do not 
immediately bring about the ABC, they are of great importance when one considers the 
problem in question. Therefore it is necessary to obtain not only the expression for the 
LAM flux density but also analogous expressions for linear momentum and for energy. 

Note that the situation in question is distinct from those considered earlier. First, it 
is necessary to take into account the polarization excitations of the crystal and the ones 
in the form of electromagnetic waves. Secondly, to study the conservation law of AM we 
must use the energy functional, which is invariant under uniform space rotations. And 
thirdly, as is known from the works of Lax and Nelson (1976a) and Bar'yakhtar and 
Turov (1988), this rotational invariance implies that the energy of the anisotropic 
polarized medium depends on the tensor of local rotations of the material R .  Since the 
latter isexpressed in terms of elasticdisplacement gradients au,/ax,, we must take elastic 
displacements U into account equally with other degrees of freedom. 

Thus, to solve the ABC problem in the way proposed above it  is necessary to analyse 
(for the case of SD media with excitonic polarization) the conservation laws of linear 
momentum, of energy and of AM within the scope of the general macroscopic approach 
where mechanical vibrational, polarization and electromagnetic excitations of a crystal 
are considered together, because they affect each other. 

So far as we know, the m e  of the SD medium with excitonic polarization has not yet 
beenanalysed within thescopeofsuch ageneralapproach. In particular,LaxandNelson 
(1976a, b) did not take the spatial dispersion into account; while in works by Lam 
(1977a. b) and Lam and Lax (1978) the electromagnetic field in the SD medium was not 
considered. Finally, in the works by Agranovich and Ginzburg (1966). Bishop and 
Maradudin (1976), Selkin (1977),Forstmann (1979) andTilley (1980), where theenergy 
conservation law was considered, elastic displacements and hence rotational invariance 
were not taken into account at all. 

In the case when dissipative processes are not taken into account, the medium may 
be described within the scope of the Lagrange theory, in our opinion, the use of such a 
model approximation in the present work is reasonable. First, aaording to Pekar (1983) 
the influence of dissipative processes on the phenomena with which the ABC problem is 
concerned is not cardinal. On many occasions the dissipation contribution to these 
phenomena proves to be not a factor at all. On the other hand. the omission of the 
dissipation will enable us to simplify the presentation and to emphasize the physical 
ideas behind our approach. And finally, if we use the Lagrange theory, we shall be able 
on studying the conservation laws to take advantage of applying the standard variational 
analysis procedure based on the use of the Noether theorem (see e.g. the monograph 
by Bogolubov and Shirkov (1980)). One of the disadvantages of this approximation is 
that we shall not be able to apply our findings freely to the case of conducting (metallic) 
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media. Althoughplasmon modesmight be easily described by introducingsomeexciton- 
like polarization vector P ! ~ ) ,  with charge density p") and current j(') for conduction 
electrons being expressed as 

p(c)  = div(p(c)) jC4 apCc)/at 

nevertheless the realm of application for such a theory would be substantially restricted as 
long as we confine ourselves to consideration of media with negligible energy dissipation 

Theother important question isconcernedwith makingachoice between thematerial 
frame of reference and the spatial one. As for the case when the spatial dispersion is 
under study with the electromagnetic field being beyond the scope of consideration, the 
most convenient frame, according to works by Lam (1977a, b) and Lam and Lax (1978), 
is the material one. 

But since to take the spatial dispersion and the electromagnetic field into account 
simultaneously is one of the specific features of this work, it is reasonable to use here 
the spatial frame from the very beginning. 

At last, we shall not consider surface roughness effects, so translational invariance 
will be assumed to hold for any direction parallel to the crystal surface. 

only. 

1.5. Organization of the paper 

Briefly, the organization of our work is as follows. In section 2 the Lagrangian for the 
SD medium with excitonic polarization is built out of the field variables. To make this 
Lagrangian invariant under displacements and rotations, we apply there the formalism 
presented by Lax and Nelson (1971a, b, 1976a) and by Har'yakhtar and Turov (1988). 
In section 3 by means of the standard variational procedure the equations of motion are 
derived from the above-mentioned Lagrangian. The obtained equations are analysed in 
section 4. 

The consideration of conservation laws, of the AM conservation law in particular 
(being, in our opinion, of interest in itself), is postponed by us to part I1 of the work 
(Bar'yakhtar ef a1 1991). In the same paper the derivation of the ABC will be given. 

2. Invariant Lagrangian 

Let us now determine the field variables, keeping in mind that we must take elec- 
tromagnetic and internal degrees of freedom into account equally with the elastic 
displacement U, 

u = x - x .  (1) 
Here X is the material coordinate vector of the centre of mass of a unit cell. It rides with 
and names this unit cell. Here, too, x is the spatial coordinate vector of the same centre 
of mass. Throughout this work both the material and the spatial frames are supposed to 
be Cartesian. The electromagnetic excitations will be described by potentialSA and a. 
Internal degrees of freedom may be described by introducing a number of internal 
coordinates in the same way as was done, for example, by Lax and Nelson (1976a, b). 
However, since in this work we are interested only in the effects that are concerned with 
the ABC problem, it is reasonable to confine ourselves to taking into consideration those 
internal variables which are associated with the polarization of the medium. Therefore 
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as internal variables we use the set of polarization excitations in the form of vector field 
functionsp”) ( p  = 1, . . . , N) wherep*) are electric dipole moments per unit mass. 

Since; below, the stored energy is supposed to be a quadratic polynomial in the 
quantitieTp”), this expression may be reduced to a diagonal form; and, consequently, it 
is convenient to use as internal variables the set of normal polarization modes of the 
crystal. This set must include the modes associated with the background polarization 
(i.e. those for which spatial dispersion effects are not a factor at a given frequency) as 
well as the resonant exciton modes. In other words, we shall describe the SD medium 
within the scope of the ‘N isolated exciton absorption lines’ approximation. 

However, if one takes into account the fact that normal modes are those whose 
contributions to the stored energy assume the form of a sum of independent terms, one 
will come to the conclusion that, if we subjected the Lagrangian to any variational 
transformation, the contribution of each of these modes to the resultant expression 
would be formally analogous mith the contribution of every other normal mode. That is 
why, henceforth, for short, we shall consider explicitly only one polarization variablep. 
Togeneralize thisconsideration to the case of the Nisolated exciton lines approximation, 
it  issufficient in the resultant expression to sum each term dependent on the polarization 
vectorp over all exciton modes, 

V G Bar’yakktar ef a1 

N 

. . . + f(p) + . . . -+ . . . + E fb”’) + . . . . (2) 
p =  1 

Let us now turn to constructing the invariant Lagrangian. To possess the invariant 
property under space and time displacements, the Lagrangian density function %must 
be independent directly of spatial coordinates x and of time f ,  with these quantities 
appearing in the expression for 9 only indirectly as the arguments of field variables and 
via the following combination that itself remains unchanged under displacements: 

X ( x ,  I) = x - u(x, I). (3)  
Moreover, since this invariance is understood to be under uniform displacements, 2 
may depend also on the substantive, or material, time derivative dx/df (i.e. one which 
holds X fixed) and on the derivative of x with respect to the material coordinates X. 

To possess the invariant property under uniform space rotations, function 92 should 
be built out of the individually rotationally invariant quantities composed of the field 
variables and of their space and time derivatives. It is conventional to use for these 
derivatives a compact notation like that given below: 

x , , ~  = axi/aXA 
(4) 

P , , ; ~  = a2p, /ax iaxk 

drp, = dpi/dI atpi = (api/af)lruedx 

where d/dr represents the material time derivative and commas denote space dif- 
ferentiation. 

Note that spatial coordinates xi change under space rotations, but material coor- 
dinates X,, being the ‘names’ of the crystal unit cells, do not. Therefore properties of 
some quantity under space rotations depend on which frame, material or spatial, each 
of the quantity’s subscripts is attributed to. In order to facilitate the distinction between 
the material and the spatial frames of reference we shall use, wherever necessary, upper- 
case subscripts to denote components in the material coordinate system and lower-case 
subscripts to denote components in the spatial coordinate system (see, for example, 
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formulae (4)). It should be noted that a distinction like this is necessary only for the 
cases when the properties of some quantity under space rotations are not obvious. 

The total Lagrangian density 2 can be decomposed into three terms as 

(i) The first term is an electromagnetic field Lagrangian density of the form 

ZF(x, t )  = [%*(x, t )  - @(x,  t)]/Sn 

with % and 93 being the total electric field strength and the total m.agnetic induction, 
respectively, 

% = E + @  % = B + B .  (7) 
Here E and B are electric and magnetic fields generated by the material body itself, but 
E and B are those generated by the external sources. These sources henceforth will be 
supposed to be located far beyond the material body. Vector quantities E and B are 
expressed conventionally in terms of the vector and scalar potentials by 

E = - V@ - (I/C)J,A (8) 

B = V X A  (9) 
where Vi@ = a@/dx,, and cis the speed of light in vacuum. 

(ii) The second term is a field-matter interaction Lagrangian density of the form 

Here p and m are, respectively, the electric and the magnetic dipole moments per unit 
mass. The mass density p for a strained crystal is related to that for an unstrained crystal 
PO by 

P ( X 3  0 = P o b  - u(x, 0). IJI (11) 

where the Jacobian J of the transformation from x to X is given by 

J ( x ,  t )  = det XA.i .  (12) 
In the formula (10) the free charge density is set to zero and the corresponding 

current is dropped since a dielectric is being considered. The necessity for taking the 
magnetization into consideration may be explained as follows. Despite the fact that in 
this work the crystal in question is understood to be non-magnetic, the effective magnetic 
moment arisesfrom the motion of the polarization. Using Minkowski’s relations we may 
approximate m by 

Here v = d,x is the velocity of the centre of mass of a unit cell. 
When oneconsiders the phenomena with whichordinarycrystalopticsdeals, it seems 

that the magnetization may be ignored in most cases. Nevertheless, it is reasonable in 
this work to take the vector m of the form (13) into account, because in this case, as will 
be shown below, the so-called Abraham force term arises in the equation of motion for 
elastic displacements. This in turn will enable us, when vie shall study the conservation 
law of linear momentum, to avoid certain confusion in making a choice between the 
expression for linear momentum density in Abraham’s form and that in Minkowski’s 
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form. (One can find the details of this problem and a bibliography, for example, in the 
monograph by M~l l e r  (1972).) 

(iii) And finally, the third term is a matter Lagrangian density gM which may be 
expressed as follows: 

%&, t )  

V G Bar'yakhtar et a1 

P(., t ) { l [u2(x ,  t )  + (d,~)ifiB(d,p)Bl 

- E(@)*; (W**; (V(W)***; E ; X ( x ,  9)) .  (14) 

The first and second terms on the right-hand side of (14) correspond, respectively, to 
the mechanicalkineticenergyand to the polarizationone. Thesymboljdenotes acertain 
phenomenological tensor. The quantity Z corresponds to thestored energy of the crystal 
per unit mass. 

Throughout this work summation over repeated subscripts is implied. 
The function LEM is expressed in terms of individually rotationally invariant quanti- 

ties, among which the following ones should be emphasized: (1) The quantity 

EA, = HX,.AXO -  AB) (15) 
is the finite strain tensor which describes the changes of the distances in the matter under 
deformation. In equation (15) and below, b is the Kronecker delta. (2) A number of 
invariant quantities related to the polarization vector are 

( ~ ( ~ P ) ) ~ ~ ~  = Pi.wR,ARkBRic ( 1 6 4  

R,, = xt,g(8 + 2E);,!,'. 
where R,, is the rotation tensor 

(17) 

In relations (16) we use the notation from the works by Bar'yakbtar and Turov (1988) 
and Bar'yakhtar et a1 (1987). 

Note that it is no mere chance that here the quantity (16d) dependent on the second- 
order space derivative of p is involved in the description of the SD medium. Indeed, 
when one considers the processes of light wave propagation through the medium, one 
conventionally expresses the energy of the system as a power series in small parameter 
k n  up to the second-power terms, where k and cudenote the wavevector magnitude and 
the effective range parameter in short-range interaction. respectively. Therefore both 
the term of the form 

a(rp)r\& B f b D  (x(x, r))(vp)E6 (18) 

- k(P)imBD(x(x, tW(vP))g; (19) 

and that of the form 

should be taken into account because they are of the same order of magnitude. In 
expressions (18) and (19) the symbols B'O) and B"' denote certain phenomenological 
tensors. 

Nevertheless, within the scope of ordiFary crystal optics, w,here investigators dis- 
regard the rotational invariance and set R to be the identity matrix, the term (19) is 
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excluded from consideration because of the equivalence between the contributions of 
the terms (18) and (19) to the equation of motion forp. (The term (19) is thought to be 
reducible to the form (18) by adding to the Lagrangian density function the proper 
divergence-like term.) 

When non-uniform rotations of the matter occur, the above-mentioned trans- 
formation of the Lagrangian becomes unsuitable and the situationchangesdramatically. 
Between the terms (18) and (19) there arises an irreducible difference dependent on 
space derivatives of the rotation tensor. In other words, the terms mentioned above 
describe the interaction between the polarization and the non-uniform rotations In 
essentially different ways. This fact will be important later when we shall obtain the 
expression for the IAM flux density, because the contributions of the terms (18) and (19) 
to this quantity cannot be reduced to one another. 

Note that instead of a number of invariant quantities of the form (16) one may choose 
the following alternative: 

(P)x =Ptxt,A (204  
(dtp)X = ~ ~ P J , . A  (206) 
( b ) X B  = P ~ . A . A X ~ . B  (204  

(v(vp))~~~ = Pr.klX,,AXk,BX!.C. (204 

The notation (20) corresponds to the formalism presented. for example, in the work by 
Lam and Lax (1978), though it seems that the importance of the term (20d) was not 
recognized by them. 

As is seen from equation (17), two methods based on the sets (16) and (20) differ 
only in the method ofdescription of the interaction between the polarizationp and the 
crystal deformation E. Since we do not intend to use any specific expression for this 
interaction, the necessity to distinguish between the above-mentioned sets does not 
arise. 

3. Equations of motion 

We shall begin by writing the Lagrangian equation of motion for the generalized coor- 
dinatesu,p,A and Q: 

(&) + = O 

To derive equation (21) we have used the following relation: 

where 6 denotes the variation that holds x and t fixed. 

s u i  = x;,Ad,(&A) 
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Although the deformation and rotations of the matter are expressed in equations 
(E), (16) and (20) via the q u a n t i t i e s ~ ~ . ~ .  to make connection with the ordinary theory 
oflinearelasticity weshall treat, on usingequation(21), theLagrangiandensityfunction 
as if it had been expanded in powers of the displacement gradients by means of the 
following iterations: 

au, att ,  au, - 6ik  + -+ --+. . . . ax,  
axk axk  ax, axk 
_- 

Thedisplacement udoesnot possessavectorpropertyineither thespatialcoordinate 
system or the material one. Nevertheless, the variation 8uA, as is seen from equation 
(3), differs from the variation 8XA only in sign, 

S U A  = - axA. (27) 

alau, = - a/axA ( 2 8 4  

a /auA,k  = (286) 

Therefore 8uA itself and the derivatives 

are vector quantities in the material frame. 

Maxwell equations of the form 
It is not surprising that Lagrangian equations (23) and (24) may be reduced to 

v x %e = (i/c)a,Fo (294 

v . a = o  (296) 
where 

9 = % + 4 n P  with P = p p  (30) 

X = % - 4 n M  with M = pm. (31) 
In equations (29) the absence of terms involving external field sources reflects the 
assumption that these sources are located beyond the space region of our interest. 

The equation of motion (21) for U may be reduced to a more tractable form 

pd,uj t f,k.k -4 = 0 

f, = P P ~ % . ~  t ~ m ~ % ~ . ~  + a , ( ( l / c ) [m x % I i )  

( 3 2 4  

(326) 

with 

and 

Here we used the following notations: 

2 ( 0 )  = ZM + 2, 

?cmk = - aY2(o)/ap,*k 

n m k l  = - aY2e(o)/ap,,kl. 

and 
(34) 
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The details of the derivation of equations (32) and (33) are given in appendix 1. The last 
term in equation (32b) corresponds to the Abraham force. 

4. Analysis of equations 

Let us analyse the obtained equations, directing our attention to the difference of the 
contributions of the terms (18) and (19) to these equations. Just as we expected, the 
above-mentioned contributions to the equation of motion (32) for U ,  unlike those to the 
equation of motion (22) forp, do not tend to be equivalent even in the limiting case when 
U+ 0 dealt with by ordinary crystal optics. In order to prove this statement we must 
express explicitly the dependence of the right-hand side of (33) on space derivatives of 
p since the first term 

depends on the aforementioned quantities in an indirect way. 
Complete presentation of the calculations is clumsy. But, fortunately, henceforth 

we shall need an explicit expression only for the antisymmetric portion of the quantity 
(36), because it is this portion that is involved in the condition of rotational invariance 
of the Lagrangian and hence in the [AM balance equation. The above-mentioned 
expression is as follows: 

Here we used the notation 

In appendiw2 we give a rigorous proof of the relation (37) for the case when 
by expression (14). 

procedure we obtain 

is defined 

Substituting equation (37) into equation (33) and using the antisymmetrization 

where the spatial dispersion contribution (i.e. dependence on the quantities J&,, and 
nk/,,,) is seen clearly. 

Owing to such an explicit presentation the difference between the contributions of 
the terms (18) and (19) to the equation of motion for elastic displacements tums out to 
be an obvious fact. It should be no surprise that this difference remains when U + 0, for 
the left-hand side of equation (32a) is the functional derivative of %‘(with respect to U ) ,  

which is known to be non-vanishing even for the case of infinitesimal amplitudes of 
mechanical vibrations. The foregoing statement will be important later in derivation of 
the expression for IAM Aux density. 
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In conclusion, let us compare our results with those obtained earlier. As was to be 
expected, equations (32), (33) and (40) are thegeneralizationofcorrespondingrelations 
given by Lax and Nelson (1976a, b) and Lam and Lax (1978), and are consistent with 
these relations in the limiting cases, respectively, when 

E!& 0 B$!Ac, = 0 f A B  =faAB (41) 

% = O  B=O fAE =fS,,. (42) 

and when 

Appendix 1 

Here we derive equations (32) and (33) from equation (21). To begin with, let us note 
that for the Lagrangian density Function 2 defined by expressions (3, (6), (10) and (14) 
the following relation holds: 

(Al.1) a g / J u i  = Poi + (l/c)[% X PPI, - YmPm.i. 

By using the foregoing relation, the mass conservation law 

(A1.2) 

(A1.3) 

(A1.4) 

The third term on the left-hand side of equation (A1.4) may be rearranged with the use 
of equations (22) and (A1.3), and also with the use of the expression that the following 
identity 

- zm.hpm,kj - z m k l p m . k F  + PPkZk.) + pmkBk,j (A1.5) 

yields for a term 

ymdt(pm,,). 
Here equation (28a) was used. Substituting the rearranged term in equation (A1.4) and 
using relation (Al.l)  we get, after some algebra, the following equation: 
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Keeping in mind that the mass density p for a strained crystal is expressed by formulae 
(11) and (12) and also using the following relation, which is well known in algebra, 

a(det &)/amii = (det (A1.7) 

we get 

a p / a u A ~ p  = - P x k , A .  (A1.8) 

Then, from (10) and (14) we find 

(A1.9) 

Finally, substitution of (A1.9) into (Al.6) and some rearrangement gives the equation 

- PPk%.j - p m k 3 k . j  - a t ( f [ P P  % ] j )  = (A1.lO) 

which completes the derivation. 

Appendix 2 

Here we present the proof of the relation (37). To begin with, we shall prove an auxiliary 
identity: 

( a X m . A / a U B . j ) X B , i  e 6 m i X j . A .  (A2.1) 

Indeed, keeping in mind that 

x m , A x A , i  E 6, (A2.2) 

we get 

(A2.3) 

Here equation (28b) has been used. Multiplying the foregoing equation through by a 
coefficient xi,AXB,i we get (A2.1). 

Then, by using (A2.1) we can prove that the identity 

E i j k ( a E B C / a U A , k ) X A . j  0 ('42.4) 
holds for arbitrary B, C and i. 

rotation tensor& is defined by relation (17) we can prove that the identity 
In an analogous way using (A2.1) and (A2.4) and also keeping in mind that the 

(A2.5) 

holds for arbitrary i, i and B. 
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Then, using auxiliary equations (A2.1), (A2.4) and (A2.5) we get 

and 

(A2.6) 

(A2.7) 

where B, C and i are arbitrary. 
Arguing by analogy we can prove also that the identities 

and 

(A2.9) 

hold for arbitrary B, C, D and i. 
depends on quantities 

uA,h,pk,pk.m andpk,,monlyviacombinations E, b)*. (Vp)**, (V(Vp))*** and (d,p)* we 
get the identity 

Using the foregoing relations and keeping in mind that 

(A2.10) 
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