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dispersive media: 1. Dynamic equations
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Abstract. The problem of the additional boundary condition in macroscopic crystal optics is
considered from the standpoint of conservation laws. The possibility of obtaining this
condition in the form of a continuity condition at the interface between two media for
macroscopic flux density of the internal angular momentum is substantiated. As is shown,
to solve this problem one must describe a medium with excitonic polarization within the
framework of a general approach, where mechanical vibrational, polarization and electro-
magnetic degrees of crystal freedom are considered together. It is shown that, to take the
spatial dispersion into account correctly, one must consider the dependence of the crystal
energy not only on the first-order space derivatives of pclarization but alse on those of second
order. The consideration of conservation laws and the derivation of the additional boundary
condition will be given in part I of this work.

1. Introduction

1.1. Preliminaries

Since the time when Pekar (1957) pointed out the necessity for specifying the additional
boundary condition (ABC) in the electrodynamics of spatially dispersive (sp) media,
this ABC has been the subject of numerous investigations (see the bibliography in
the collective monograph edited by Rashba and Sturge (1982)). Nevertheless, the
understanding of the problem seems to be far from perfect. Unquestionable progress
has been made in understanding what specific forms the ABC may take. Meanwhile,
insight into the physical reasons why the ABC assumes just these forms is still largely
illusory.

As far as we can judge from available publications, the most recognized by inves-
tigators is the microscopic approach to the ABC problem, where to obtain the ABC they
attempt to find a self-consistent solution of Maxwell and Schrédinger equations. This
approach is certainly the most precise one, but high accuracy, being an advantage of the
microscopic approach, has nevertheless been achieved at the cost of, in our opinion,
unnecessary particularity of the ABC problem statement. This in turn has led to a
considerable spread in results obtained by different authors but apparently has not
revealed the physical idea that lies behind the ABC.

In this sense the possibility of resoiving the ABC problem within the framework of a
macroscopic phenomenological approach, where the state of the medium is described
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in terms of macroscopically continuous field variables, gains prime importance. As is
known, on treating a problem in this way one makes the problem statement more fine;
but in return one makes it more general and profits from the universality of the final
results. Unfortunately the macroscopic treatment meets a difficulty that is insur-
mountable from our point of view without going beyond the scope of the traditional ABc
problem formulation,

1.2, The essence of the problem

Instandard interpretation the ABC problem is reduced to the question of how to join two
macro-asymptotic solutions, polaritons and electromagnetic waves, at the interface of
two media, viz. an sD medjum and one for which spatial dispersion effects are negligible.
As the former, some crystal is considered, provided that the frequency of the waves is
close to an exciton resonance line for a given crystal. As the latter, either the vacuum or
an exciton-free layer of the same crystal, where the wave frequency does not fall within
the resonant region, is chosen.

The main point of the difficulty is that at the interface some transition layer occurs
within which polariton solutions go over to those in the form of electromagnetic waves.
Since the exciton resonant region as a rule is extremely narrow (Aw/w, = 107%), the
width of this transition layer may prove to be small enough to become of the same order
of magnitude as the effective range parameter in the short-range interaction responsible
for the spatial dispersion. If that is the case, the transition layer, unlike the rest of the
crystal, may not be described in terms of macroscopic field variables only, so long as
there are no grounds for regarding the exciton polarization p*(x) to be a sufficiently
smooth function of coordinates x as Agranovich and Ginzburg (1966) believed or for
regarding the wavevector & to be small everywhere as assumed by Skettrup (1973).

Thus, the fact that within the transition layer the function p**(x) may prove to be
insufficiently smooth should be taken into account, thereby bringing into question the
validity of reducing the non-local expression for stored energy within the transition layer
to the local form by expanding this expression in a power series of weak polarization
gradient; though a reduction like this is usual when one treats the ABC problem within
the scope of a traditional macroscopic approach interpretation.

If, all the same, on describing the transition layer one employs formally this reduction
in the way Agranovich and Ginzburg (1966} did, the series coefficients will be inde-
terminate quantities; and it is exclusively the ABC that, if it were at hand, could provide
the required information on these coefficients.

In order to avoid confusion, it is appropriate to note that our interpretation of the
ABC problem is distinct from the one proposed by Birman and Sein (1972), Birman
(1982) and Birman and Zeyher (1974) or, say, by Halevi and Fuchs (1984). In their
works, to obtain the ABC they proceeded from the fact that the reflectivity for excitons
is either assumed to be given as a result of a microscopic consideration or thought to
be an arbitrary phenomenological parameter, which is equivalent to postulating the
boundary condition for excitons. Ananalogous approach hasbeendevelopedforthe case
of conducting media in the works by Garcia-Moliner and Flores (1977), Mukhopadhyay
(1978) and Forstmann et al (1978), where the reflectivity for plasmons was introduced
through a parameter. Since according to Pekar (1983) and Zeyher et af (1972) the form
of the ABC depends in a unique fashion on the reflectivity for excitons, to resolve the ABC
problem within the framework of the macroscopic approach must imply, from our point
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of view, finding this reflectivity from first principles by means of macroscopic methods
only.

1.3. Basic principles of our approach

To overcome the difficulty mentioned above without resort to the help of microscopic
considerations, we should combine the field variables into a quantity that is macro-
scopically continuous at the interface. As is known, the flux density of every constant of
motion is an example of such a continuous quantity. When the problem of boundary
conditions (8C) is considered in mechanics and electrodynamics of continuous media,
making use of the conservation laws of linear momentum and of energy is usual. As
regards the ABC problem, taking these laws into account is necessary too. Particularly,
energy conservation, in accord with Bishop and Maradudin (1976) and Selkin (1977),
imposes limitations on the form of the ABC. Unfortunately, making use of only these laws
would not resolve the ABC problem for the case of SD media with excitonic polarization.

To be fair we must note that Forstmann (1979} attempted to solve the ABC problem
for the case of an excitonic dielectric by proceeding from energy conservation only.
Particularly, Forstmann split up the condition of energy flux continuity at the surface
into some separate conditions. This approach has already been criticized by Boardman
(1982). In our opinion Forstmann’s method seems to add nothing new in comparison
with the approach proposed by Halevi and Fuchs (1984) as long as exciton reflectivity
remains an indeterminate parameter. As a matter of fact, Fortsmann removed this
indeterminacy in his work by imposing restrictions on BC for the electromagnpetic field,
which is certainly equivalent to postulating the ABC, We shall return to this question in
part II of this work with our ABC being at hand.

Therefore we shall turn our attention to a study of the law of angular momentum
(AM) conservation, which, as a rule, was assumed to be beyond the scope of the ABC
problem.

More than likely the {atter circumstance may be attributed to the fact that, when
they considered the ABC problem, the investigators used, consciously or otherwise, the
notion originating from the mechanics of unpolarized media, where the AM, being
generated by the motion of the centres of mass of the crystal unit cells only, contains
exclusively an orbjtal component of the total AM. The point is that in such a case the
condition of AM flux density continuity {AM FDC) at the interface may readily be reduced
to an analogous condition for linear momentum with the former bringing about no
independent BC.

According to de Groot and Suttorp (1972) and also Lax and Nelson (1976a, b), when
electrical polarization is the case, an additional contribution to the total AM arises, This
contribution is generated by the motions within the unit cells and is called internal
angular momentum (1AM).

The main point of the foregoing situation is that the condition of total AM FDC is
reducible in the light of the above-stated reasoning to the condition of IAM FBC with the
latter not being a simple identity if spatial dispersion occurs.

The presence of spatial dispersion is of paramount importance for the 1AM FDC
condition to be an independent BC, because otherwise the 1AM is constrained to move
with the material, and 1aM transfer across the transition layer is impossible. That is why,
for example, being a corollary of the AM conservation law in the specific case of a non-
dispersive medium, the BC (7.6) obtained in Lax and Nelson (1976b) does not contain
any additional information in comparison with some other BC derived in the same work.
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According to Lam (1977a, b) and Lam and Lax (1978}, in the case of an sp medium
the IAM may be transferred through the crystal, and consequently we may infer that the
condition of the 1AM FDC across the transition layer becomes an independent BC, which,
being expressed in terms of p**, may be used as the ABC.

The foregoing reasoning is the basis for the novel approach to the ABc problem, and
the aim of our work is to obtain the ABC in this way.

1.4. Choosing a formalism

In spite of the fact that the conservation laws of linear momentum and of energy do not
immediately bring about the ABC, they are of great importance when one considers the
problem in question. Therefore it is necessary to obtain not only the expression for the
1aM flux density but also analogous expressions for linear momentum and for energy.

Note that the situation in question is distinct from those considered earlier. First, it
is necessary to take into account the polarization excitations of the crystal and the ones
in the form of electromagnetic waves. Secondly, to study the conservation law of AM we
must use the energy functional, which is invariant under uniform space rotations. And
thirdly, as is known from the works of Lax and Nelson (1976a) and Bar'yakhtar and
Turov (1988), this rotational invariance implies that the energy of the anisotropic
polarized medium depends on the tensor of local rotations of the material R. Since the
latter is expressed in terms of elastic displacement gradients du,/ax,, we must take elastic
displacements u into account equally with other degrees of freedom.

Thus, to solve the ABC problem in the way proposed above it is necessary to analyse
{for the case of sp media with excitonic polarization) the conservation laws of linear
momentum, of energy and of AM within the scope of the general macroscopic approach
where mechanical vibrational, polarization and electromagnetic excitations of a crystal
are considered together, because they affect each other.

So far as we know, the case of the sSD medium with excitonic polarization has not yet
been analysed within the scope of such a general approach. In particular, Lax and Nelson
(1976a, b) did not take the spatial dispersion into account; while in works by Lam
(1977a, b) and Lam and Lax (1978) the electromagnetic field in the sp medium was not
considered. Finally, in the works by Agranovich and Ginzburg (1966), Bishop and
Maradudin (1976), Selkin (1977), Forstmann (1979) and Tilley (1980), where the energy
conservation law was considered, elastic displacements and hence rotational invariance
were not taken into account at all.

In the case when dissipative processes are not taken into account, the medium may
be described within the scope of the Lagrange theory. In our opinion, the use of such a
model approximation in the present work is reasonable. First, according to Pekar (1983)
the influence of dissipative processes on the phenomena with which the ABC probiem is
concerned is not cardinal. On many occasions the dissipation contribution to these
phenomena proves to be not a factor at all. On the other hand, the omission of the
dissipation will enable us to simplify the presentation and to emphasize the physical
ideas behind our approach. And finally, if we use the Lagrange theory, we shall be able
on studying the conservation laws to take advantage of applying the standard variational
analysis procedure based on the use of the Noether theorem (see e.g. the monograph
by Bogolubov and Shirkov (1980)). One of the disadvantages of this approximation is
that we shall not be able to apply our findings freely to the case of conducting {metallic)
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media. Although plasmon modes might be easily described by introducing some exciton-
like polarization vector p'@, with charge density p* and current j for conduction
electrons being expressed as

nevertheless the realm of application forsuch atheory would be substantially restricted as
long as we confine ourselves to consideration of media with negligible energy dissipation
only.

The otherimportant question is concerned with making achoice between the material
frame of reference and the spatial one. As for the case when the spatial dispersion is
under study with the electromagnetic field being beyond the scope of consideration, the
most convenient frame, according to works by Lam (1977a, b) and Lam and Lax (1978),
is the material cne,

But since to take the spatial dispersion and the electromagnetic field into account
simultaneously is one of the specific features of this work, it is reasonable to use here
the spatial frame from the very beginning.

At last, we shall not consider surface roughness effects, so translational invariance
will be assumed to hold for any direction parallel to the crystal surface.

1.5, Organization of the paper

Briefly, the organization of our work is as follows. In section 2 the Lagrangian for the
sD medium with excitonic polarization is built out of the field variables. To make this
Lagrangian invariant under displacements and rotations, we apply there the formalism
presented by Lax and Nelson (1971a, b, 1976a) and by Bar’yakhtar and Turov (1988).
In section 3 by means of the standard variational procedure the equations of motion are
derived from the above-mentioned Lagrangian. The obtained equations are analysed in
section 4.

The consideration of conservation laws, of the AM conservation law in particular
(being, in our opinion, of interest in itself), is postponed by us to part II of the work
(Bar'yakhtar et a/ 1991). In the same paper the derivation of the ApC will be given.

2. Invariant Lagrangian

Let us now determine the field variables, keeping in mind that we must take elec-
tromagnetic and internal degrees of freedom into account equally with the elastic
displacement u,

u=x—X. (1)

Here X is the matenal coordinate vector of the centre of mass of a unit cell. It rides with
and names this unit cell. Here, too, x is the spatial coordinate vector of the same centre
of mass. Throughout this work both the material and the spatial frames are supposed to
be Cartesian. The electromagnetic excitations will be described by potentials A and .
Internal degrees of freedom may be described by introducing a number of internal
coordinates in the same way as was done, for example, by Lax and Nelson (1976a, b).
However, since in this work we are interested only in the effects that are concerned with
the ABC problem, it is reasonable to confine curselves to taking into consideration those
internal variables which are associated with the polarization of the medium. Therefore
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as internal variables we use the set of polarization excitations in the form of vector field
functions p (1 = 1, . . ., N) where p* are electric dipole moments per unit mass.

Since, below, the stored energy is supposed to be a quadratic polynomial in the
quantities p*, this expression may be reduced to a diagonal form; and, consequently, it
is convenient to use as internal variables the set of normal polarization modes of the
crystal. This set must include the modes associated with the background polarization
(i.e. those for which spatial dispersion effects are not a factor at a given frequency) as
well as the resonant exciton modes. In other words, we shall describe the sSD medium
within the scope of the “ isolated exciton absorption lines’ approximation.

However, if one takes into account the fact that normal modes are those whose
contributions to the stored energy assume the form of a sum of independent terms, one
will come to the conclusion that, if we subjected the Lagrangian to any variational
transformation, the contribution of each of these modes to the resultant expression
would be formally analogous with the contribution of every other normal mode. That is
why, henceforth, for short, we shall consider explicitly only one polarization variable p.
To generalize this consideration to the case of the Nisolated exciton lines approximation,
itis sufficient in the resultant expression to sum each term dependent on the polarization
vector p over all exciton modes,

N
R 17 R N (-1 @
=1

Let us now turn to constructing the invariant Lagrangian. To possess the invariant
property under space and time displacements, the Lagrangian density function £ must
be independent directly of spatial coordinates x and of time ¢, with these quantities
appearing in the expression for &£ only indirectly as the arguments of field variables and
via the following combination that itself remains unchanged under displacements:

X(x, ) =x—u(x, ). (3)

Moreover, since this invariance is understood to be under uniform displacements, £
may depend also on the substantive, or material, time derivative dx/d¢ (i.e. one which
holds X fixed) and on the derivative of x with respect to the material coordinates X.

To possess the invariant property under uniform space rotations, function & should
be built out of the individually rotationally invariant quantities composed of the field
variables and of their space and time derivatives. It is conventional to use for these
derivatives a compact notation like that given below:

P, =3%pfaxox, Xia =3x,/8X 4
d,p;, =dp,/dt 8.P; = (8P:/31)|txeas

where d/dr represents the material time derivative and commas denote space dif-
ferentiation.

Note that spatial coordinates x; change under space rotations, but material coor-
dinates X, being the ‘names’ of the crystal unit cells, do not. Therefore properties of
some quantity under space rotations depend on which frame, material or spatial, each
of the quantity’s subscripts is attributed to. In order to facilitate the distinction between
the material and the spatial frames of reference we shall use, wherever necessary, upper-
case subscripts to denote components in the material coordinate system and lower-case
subscripts to denote components in the spatial coordinate system (see, for example,

(4)
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formulae (4)). It should be noted that a distinction like this is necessary only for the
cases when the properties of some quantity under space rotations are not obvious.
The total Lagrangian density ¥ can be decomposed into three terms as

$=§£F+$|+$M- (5)
(1) The first term is an electromagnetic field Lagrangian density of the form
Lelx, 1) =[8%(x, ) ~ B*(x, ))/8x (6)

with € and % being the total electric field strength and the total magnetic induction,
respectively,

B=E+@ B=B+B. ()

Here E and B are electric and magnetic fields generated by the material body itself, but
& and B are those generated by the external sources. These sources henceforth will be
supposed to be located far beyond the material body. Vector quantities E and B are
expressed conventionally in terms of the vector and scalar potentials by
E=—-V® - (1/c)3,4 (8}
B=VxA 9)

where V@ = 3®/ax;, and c is the speed of light in vacuum.
(ii} The second term is a field—matter interaction Lagrangian density of the form

Ly(x, ) = plx, D[p(x, ) - E(x, 1) + m(x, 1) - B(x, D] (10)

Here p and m are, respectively, the electric and the magnetic dipole moments per unit
mass, The mass density p for a strained crystal is related to that for an unstrained crystal

poby

plx, 7) =p0(x_ u(x, t))' Ji (11)

where the Jacobian J of the transformation from x to X is given by
J(x, t) = det XAJ" (12)

In the formula (10) the free charge density is set to zero and the corresponding
current is dropped since a dielectric is being considered. The necessity for taking the
magnetization into consideration may be explained as follows. Despite the fact that in
this work the crystal in question is understood to be non-magnetic, the effective magnetic
moment arises from the motion of the polarization. Using Minkowski's relations we may
approximate m by

m=[p x (v/c)]. (13)

Here p = d,x is the velocity of the centre of mass of a unit cell.

When one considers the phenomena with which ordinary crystal optics deals, it seems
that the magnetization may be ignored in most cases. Nevertheless, it is reasonable in
this work to take the vector m of the form (13) into account, because in this case, as will
be shown below, the so-called Abraham force term arises in the equation of motion for
elastic displacements. This in turn will enable us, when we shall study the conservation
law of linear momentum, to avoid certain confusion in making a choice between the
expression for linear momentum density in Abraham’s form and that in Minkowski’s
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form. (One can find the details of this problem and a bibliography, for example, in the
monograph by Mailer (1972).)

(iii} And finally, the third term is 2 matter Lagrangian density ¥\ which may be
expressed as follows:

Lalx, ) = plx, O3V (x, 1) + (d,p)3F2b(d, P)E]
= Z((p)*; (Vp)**; (V(Vp))***, E; X(x, )} (14)

The first and second terms on the right-hand side of (14) correspond, respectively, to
the mechanical kinetic energy and to the polarization one. The symbol f denotes a certain
phenomenological tensor. The quan’uty Z corresponds to the stored energy of the crystal
per unit mass.

Throughout this work summation over repeated subscripts is implied.

The function &£, is expressed in terms of individually rotationally invariant quanti-
ties, among which the following ones should be emphasized: (1) The quantity

Eap = (x;axip — Sap) (15)

is the finite strain tensor which describes the changes of the distances in the matter under
deformation. In equation (15) and below, & is the Kronecker delta, (2) A number of
invariant quantities related to the polarization vector are

@A = piRia (16a)

(dp)} = dpiRia (16b)

(VP)Ab =pisxRiaRyn (16¢)

(V(VP))ise = PiuRiaRisRic (164)
where R, is the rotation tensor

Ria =x;5(8 +2E):)2. (17)

In relations (16) we use the notation from the works by Bar’yakhtar and Turov (1988)
and Bar'yakhtar et al (1987).

Note that it is no mere chance that here the quantity (16d) dependent on the second-
order space derivative of p is involved in the description of the sb medium. Indeed,
when one considers the processes of light wave propagation through the medium, one
conventionally expresses the energy of the system as a power series in small parameter
ka up to the second-power terms, where £ and & denote the wavevector magnitude and
the effective range parameter in short-range interaction, respectively. Therefore both
the term of the form

4(Vp) 15 BStep (X(x, ))(Vp) D (18)
and that of the form
— $(p) A Blbep (X (x, ))(V(VP)) 122 (19)

should be taken into account because they are of the same order of magnitude. In
expressions (18) and (19) the symbols 8% and B denote certain phenomenological
tensors.

Nevertheless, within the scope of ordinary crystal optics, where investigators dis-
regard the rotational invarjance and set R to be the identity matrix, the term (19) is
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excluded from consideration because of the equivalence between the contributions of
the terms (18) and (19) to the equation of motion for p. (The term (19) is thought to be
reducible to the form (18) by adding to the Lagrangian density function the proper
divergence-like term.)

When non-uniform rotations of the matter occur, the above-mentioned trans-
formation of the Lagrangian becomes unsuitable and the situation changes dramatically.
Between the terms (18) and (19) there arises an irreducible difference dependent on
space derivatives of the rotation tensor. In other words, the terms mentioned above
deseribe the interaction between the polarization and the non-uniform rotations in
essentially different ways. This fact will be important later when we shall obtain the
expression for the 1AM flux density, because the contributions of the terms (18) and (19)
to this quantity cannot be reduced to one another.

Note that instead of a number of invariant quantities of the form (16) one may choose
the following alternative:

(P)A =pixia (20a)
(dp)a = dpixia (20B)
(VP)ik = pisXiaXep (20c)
(V(Vp) ;;z = PisXiaXe XL C ‘ (204)

The notation {20} corresponds to the formalism presented, for example, in the work by
Lam and Lax (1978), though it seems that the importance of the term (20d) was not
recognized by them.

As is seen from equation (17), two methods based on the sets (16) and (20) differ
only in the method of description of the interaction between the polarization p and the
crystal deformation E. Since we do not intend to use any specific expression for this
interaction, the necessity to distinguish between the above-mentioned sets does not
arise.

3. Equations of motion

We shall begin by writing the Lagrangian equation of motion for the generalized coor-
dinates u, p, A and P:

0 () + (o + ) — 2= 21
‘ d ;xj'A auA,k aU; *ialk & 6uA B ( )
1 8& 3L LEA G
o (oae) “op~ Grun)e* o) 2
Pe\padp,) " op. \apial s \opiw)m 22)
aF 8
o (a(atA,-)) * (aA,.,k),k =0 (23)
d
(Bq).k),k =0. (24)
To derive equation (21) we have used the following relation:
EU[' = x,-,Ad,(guA) (25)

where & denotes the variation that holds x and ¢ fixed.
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Although the deformation and rotations of the matter are expressed in equations
(15), (16) and (20) via the quantities x; ,, to make connection with the ordinary theory
of linear elasticity we shall treat, on using equation (21), the Lagrangian density function
as if it had been expanded in powers of the displacement gradients by means of the
following iterations:

9%, ou, |, du, By

_=6ik+_+

an d9x;  ox, dx, (26)

The displacement & does not possess a vector property in either the spatial coordinate
system or the material one. Nevertheless, the variation Su,, as is seen from equation
(3), differs from the variation 8.X, only in sign,

Sup=—8Xa. 27)
Therefore Su, itself and the derivatives

8fduy = —3/0X, (28a)

dfdupy =—8/3X 44 (286)

are vector quantities in the material frame.
It is not surprising that Lagrangian equations (23) and (24) may be reduced to
Maxwell equations of the form

V X ¥ =(1/c)3, D (29a)

V- @=0 (295)
where

D =%+ 4nP with P = pp 30)

H=B —daM withM = pm. 3D

In equations (29) the absence of terms involving external field sources reflects the
assumption that these sources are located beyond the space region of our interest.
The equation of motion (21) for # may be reduced to a more tractable form

pdiv; + 1y, —f;=0 (32a)
with
fi=0p%;; + pm®B,; + 3, ((1/c)pep x B];) (326)
and
F SE(O) p v
W= ‘%;:{'_)'XM -p ?k [P B +pijau +2pi T — (P )i (33)

Here we used the following notations:
PO =2, + % (34)
and
A =~ 0EYfop,,. 1 (35a)
Ty = = 3£O [3p 1. (35b)
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The details of the derivation of equations (32) and (33) are given in appendix 1. The last
term in equation (326) corresponds to the Abraham force,

4. Analysis of equations

Let us analyse the obtained equations, directing our attention to the difference of the
contributions of the terms (18} and (19) to these equations. Just as we expected, the
above-mentioned contributions to the equation of motion (32) for &, unlike those to the
equation of motion (22) for p, do not tend to be equivalent even in the limiting case when
©— 0 dealt with by ordinary crystal optics. In order to prove this statement we must
express explicitly the dependence of the right-hand side of (33) on space derivatives of
p since the first term

(LY
Uak

depends on the aforementioned quantities in an indirect way.

Complete presentation of the calculations is clumsy. But, fortunately, henceforth
we shall need an explicit expression only for the antisymmetric portion of the quantity
(36), because it is this portion that is involved in the condition of rotational invariance
of the Lagrangian and hence in the 1AM balance equation. The above-mentioned
expression is as follows:

ik %%ZXAJ = — Ep(Yrd,p; + P76+ PjomTkm
t P ik + PjoimTokion + 28 i Tt ) {37)
Here we used the notation
Y = — 3L /a(d,p) (38)
Ty = = 3%/3p,. (39)

In appendix 2 we give arigorous proof of the relation (37) for the case when £y is defined
by expression (14).

Substituting equation (37) into equation (33) and using the antisymmetrization
procedure we obtain

ety = — E(P(oy/e)lp X BY; + v, (dep))

+ Pkt PimThem + Pjim T + (P j i) 1) (40)

where the spatial dispersion contribution (i.e. dependence on the quantities 7, and
Ty,) 18 seen clearly.

Owing to such an explicit presentation the difference between the contributions of
the terms (18) and (19) to the equation of motion for elastic displacements turns out to
be an obvious fact. It should be no surprise that this difference remains when « — 0, for
the left-hand side of equation (32a) is the functional derivative of & (with respect to u),
which is known to be non-vanishing even for the case of infinitesimal amplitudes of
mechanical vibrations. The foregoing statement will be important later in derivation of
the expression for 1aM flux density.
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In conclusion, let us compare our results with those obtained earlier. As was to be
expected, equations (32}, (33) and (40) are the generalization of corresponding relations
given by Lax and Nelson (1976a, b) and Lam and Lax (1978), and are consistent with
these relations in the limiting cases, respectively, when

Bhep =0 Bigep =0 fag =fdan (41)
and when
&

[l
=
=3
i

0 fag =f8az. (42)

Appendix 1

Here we derive equations (32) and {33) from equation (21). To begin with, let us note
that for the Lagrangian density function &£ defined by expressions (5), (6), (10) and (14)
the following relation holds:

aLfov; = pv; + (1/O)B X pp); = YmPm.i- (AL1)
By using the foregoing relation, the mass conservation law

dp+ (ovy)s =0 (Al2)
and the following identity

d (X a)Xa, = v;; (Al1.3)

we may rewrite equation (21} as

1 1
po, + p4),; = 85 YmPrmitin JXa, + (S (B X pliwin )Xo,

R EEAY)
)
K dutg

Ol p & ¥ay=0 (A14)

The third term on the left-hand side of equation (A1.4) may be rearranged with the use
of equations (22) and (A1.3), and also with the use of the expression that the following
identity

a2 ER AL ER A ERAY
ggfjﬂ} = 30, D~ Ymdi(Prj) = 3 Ay~ Btin s Xaxj+ “557‘0""'
= T kP — FoiPmiy + PP Ery + o By (AL.5)

yields for 2 term

Ua

]’mdl(}u m,j )
Here equation (28a) was used. Substituting the rearranged term in equation (A1.4) and
using relation (A1.1) we get, after some algebra, the following equation:

2LO

pd.w; + 58'(9) + (auA k"X,a._,-) ) + (TP mj + TemiaPomiy = Proj i 1)

1
—PpiE; — o By + Pdr(‘c‘ [& x P]j) =0. (Al.6)
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Keeping in mind that the mass density p for a strained crystal is expressed by formulae
(11) and (12) and also using the following relation, which is well known in algebra,

a(det @)/oa,; = (det &)(a1); (ALT)
we get

3p/dUax = —PXya- (Al1.8)
Then, from (10} and (14) we find

:fi Xa;= %Z{CP)XAJ - 208, (A1.9)

Finally, substitution of (A1.9) into (A1.6) and some rearrangement gives the equation

(L0 v
pd.o; + (P 2(£%/p) Xaj— p—= [P X B]; + P Tk + 2P0 T omtt — (Pm,;‘v'fmkz),z).k
6uA‘k C
1
- pie; = e = 0, [op X B ) =0 (AL10)

which completes the derivation.

Appendix 2

Here we present the proof of the relation (37). To begin with, we shall prove an auxiliary
identity:

(0. a/8up ) Xp. = S ik a- (A2.1)
Indeed, keeping in mind that

XmAXa1=Om (A2.2)
we get

a(xm.C/YC.I) — axm.c
auB‘f- 6“3‘]'

Xei— xm.C5CB‘5fj =0. (A2.3)

Here equation (28b) has been used. Multiplying the foregoing equation through by 2
coefficient x; , Xp ; we get (A2.1).
Then, by using (AZ2.1) we can prove that the identity

Ej(3Epc/ua k)X a; =0 (A2.4)

holds for arbitrary B, Cand i.
In an analogous way using (A2.1) and (A2.4) and also keeping in mind that the
rotation tensor R is defined by relation (17) we can prove that the identity

aR
Eijk(__I_B XA.j) = gijk(aﬁRRB) (A?--S)

auA,k

holds for arbitrary i, / and B.
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Then, using auxiliary equations (A2.1), {A2.4) and (A2.5) we get

ap)g Hp)E
L3 A du, XA.; r'jkP;'RkB = Py —é;:_ T e o (A2.6)
and
3(Vp) 5¢
Ei}k aMA L= XA.J = gr;k(p; mRkBRmC + Pm, JRmBRkC)
( (VP O(Vp)ﬁé)
= ) + . .
i P s (2.7
where B, C and i are arbitrary.
Arguing by analogy we can prove also that the identities
3(V(Vp)) b I(V(Vp))8th 3(V(Vp)) B8
v Vs T vy B
and
a(dp)8 a(d.p)s
i Nl £ NV . A2,
qu auA.R AT Euk a(d ) P,r ( 9)

hold for arbitrary B, C, D and i.
Using the foregoing relations and keeping in mind that &£, depends on quantities

Ua ks Pks Prom AN Py 4y Only via combinations £, (p)*, (Vp)**, (V(Vp))*** and (d,p)* we
get the identity

3£ p)

En P i g Al

= —gulyedip; + pjoy

+ D im + Pm i Tomke + P i + 2P e i uit) (A2.10)
which completes the proof.
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